๐Ÿ˜‡
Deep Multi-Agent Reinforcement Learning
  • Deep Multi-Agent Reinforcement Learning
  • Abstract & Contents
    • Abstract
  • 1. Introduction
    • 1. INTRODUCTION
      • 1.1 The Industrial Revolution, Cognition, and Computers
      • 1.2 Deep Multi-Agent Reinforcement-Learning
      • 1.3 Overall Structure
  • 2. Background
    • 2. BACKGROUND
      • 2.1 Reinforcement Learning
      • 2.2 Multi-Agent Settings
      • 2.3 Centralized vs Decentralized Control
      • 2.4 Cooperative, Zero-sum, and General-Sum
      • 2.5 Partial Observability
      • 2.6 Centralized Training, Decentralized Execution
      • 2.7 Value Functions
      • 2.8 Nash Equilibria
      • 2.9 Deep Learning for MARL
      • 2.10 Q-Learning and DQN
      • 2.11 Reinforce and Actor-Critic
  • I Learning to Collaborate
    • 3. Counterfactual Multi-Agent Policy Gradients
      • 3.1 Introduction
      • 3.2 Related Work
      • 3.3 Multi-Agent StarCraft Micromanagement
      • 3.4 Methods
        • 3.4.1 Independent Actor-Critic
        • 3.4.2 Counterfactual Multi-Agent Policy Gradients
        • 3.4.2.1 baseline lemma
        • 3.4.2.2 COMA Algorithm
      • 3.5 Results
      • 3.6 Conclusions & Future Work
    • 4 Multi-Agent Common Knowledge Reinforcement Learning
      • 4.1 Introduction
      • 4.2 Related Work
      • 4.3 Dec-POMDP and Features
      • 4.4 Common Knowledge
      • 4.5 Multi-Agent Common Knowledge Reinforcement Learning
      • 4.6 Pairwise MACKRL
      • 4.7 Experiments and Results
      • 4.8 Conclusion & Future Work
    • 5 Stabilizing Experience Replay
      • 5.1 Introduction
      • 5.2 Related Work
      • 5.3 Methods
        • 5.3.1 Multi-Agent Importance Sampling
        • 5.3.2 Multi-Agent Fingerprints
      • 5.4 Experiments
        • 5.4.1 Architecture
      • 5.5 Results
        • 5.5.1 Importance Sampling
        • 5.5.2 Fingerprints
        • 5.5.3 Informative Trajectories
      • 5.6 Conclusion & Future Work
  • II Learning to Communicate
    • 6. Learning to Communicate with Deep Multi-Agent ReinforcementLearning
      • 6.1 Introduction
      • 6.2 Related Work
      • 6.3 Setting
      • 6.4 Methods
        • 6.4.1 Reinforced Inter-Agent Learning
        • 6.4.2 Differentiable Inter-Agent Learning
      • 6.5 DIAL Details
      • 6.6 Experiments
        • 6.6.1 Model Architecture
        • 6.6.2 Switch Riddle
        • 6.6.3 MNIST Games
        • 6.6.4 Effect of Channel Noise
      • 6.7 Conclusion & Future Work
    • 7. Bayesian Action Decoder
      • 7.1 Introduction
      • 7.2 Setting
      • 7.3 Method
        • 7.3.1 Public belief
        • 7.3.2 Public Belief MDP
        • 7.3.3 Sampling Deterministic Partial Policies
        • 7.3.4 Factorized Belief Updates
        • 7.3.5 Self-Consistent Beliefs
      • 7.4 Experiments and Results
        • 7.4.1 Matrix Game
        • 7.4.2 Hanabi
        • 7.4.3 Observations and Actions
        • 7.4.4 Beliefs in Hanabi
        • 7.4.5 Architecture Details for Baselines and Method
        • 7.4.6 Hyperparamters
        • 7.4.7 Results on Hanabi
      • 7.5 Related Work
        • 7.5.1 Learning to Communicate
        • 7.5.2 Research on Hanabi
        • 7.5.3 Belief State Methods
      • 7.6 Conclusion & Future Work
  • III Learning to Reciprocate
    • 8. Learning with Opponent-Learning Awareness
      • 8.1 Introduction
      • 8.2 Related Work
      • 8.3 Methods
        • 8.3.1 Naive Learner
        • 8.3.2 Learning with Opponent Learning Awareness
        • 8.3.3. Learning via Policy gradient
        • 8.3.4 LOLA with Opponent modeling
        • 8.3.5 Higher-Order LOLA
      • 8.4 Experimental Setup
        • 8.4.1 Iterated Games
        • 8.4.2 Coin Game
        • 8.4.3 Training Details
      • 8.5 Results
        • 8.5.1 Iterated Games
        • 8.5.2 Coin Game
        • 8.5.3 Exploitability of LOLA
      • 8.6 Conclusion & Future Work
    • 9. DiCE: The Infinitely Differentiable Monte Carlo Estimator
      • 9.1 Introduction
      • 9.2 Background
        • 9.2.1 Stochastic Computation Graphs
        • 9.2.2 Surrogate Losses
      • 9.3 Higher Order Gradients
        • 9.3.1 Higher Order Gradient Estimators
        • 9.3.2 Higher Order Surrogate Losses
        • 9.3.3. Simple Failing Example
      • 9.4 Correct Gradient Estimators with DiCE
        • 9.4.1 Implement of DiCE
        • 9.4.2 Casuality
        • 9.4.3 First Order Variance Reduction
        • 9.4.4 Hessian-Vector Product
      • 9.5 Case Studies
        • 9.5.1 Empirical Verification
        • 9.5.2 DiCE For multi-agent RL
      • 9.6 Related Work
      • 9.7 Conclusion & Future Work
  • Reference
    • Reference
  • After
    • ๋ณด์ถฉ
    • ์—ญ์ž ํ›„๊ธฐ
Powered by GitBook
On this page

Was this helpful?

  1. II Learning to Communicate
  2. 7. Bayesian Action Decoder
  3. 7.4 Experiments and Results

7.4.3 Observations and Actions

Hanabi์˜ action space๋ฅผ ์‚ดํŽด๋ณด์ž๋ฉด, ๊ฐ agent๋Š” ๊ฐ ์นด๋“œ์— ๋Œ€ํ•ด ๋ฒ„๋ฆฌ๊ฑฐ๋‚˜, ๋“ฑ๋กํ•˜๋Š” Nhร—2 N_h \times 2 Nhโ€‹ร—2์˜ ํ–‰๋™์„ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ, Ncolor+Nrank N_{\mathrm{color}}+ N_{\mathrm{rank}}Ncolorโ€‹+Nrankโ€‹์— ๋Œ€ํ•œ ํžŒํŠธ๋ฅผ ์ค„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์ƒ๋Œ€์˜ ํŒจ์ค‘ rank๋‚˜ color์— ๋Œ€ํ•ด ์•Œ๋ ค์ค„ ์ˆ˜ ์žˆ๋Š”๋ฐ,(๋‘˜ ์ค‘ ํ•˜๋‚˜๋งŒ) ์ด๋Š” ํŒจ์˜ ๊ฐ™์€ rank ํ˜น์€ color์— ๋Œ€ํ•ด ๋ชจ๋‘ ์•Œ๋ ค์ค„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ฒ˜์Œ์— ๋ชจ๋‘์˜ ํ† ํฐ 8๊ฐœ๋ฅผ ๊ฐ€์ง€๊ณ  ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค. ํžŒํŠธ์— ๋Œ€ํ•œ ๋Œ€๊ฐ€๋Š” 1๊ฐœ์˜ ํ† ํฐ์ด๊ณ , ์นด๋“œ๋ฅผ ํ•˜๋‚˜ ๋ฒ„๋ฆผ์œผ๋กœ์จ ๋‹ค์‹œ ํ•˜๋‚˜๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ชจ๋“  agent๊ฐ€ ์นด๋“œ๋ฅผ ์†Œ์ง„ํ•˜๋ฉด, ์ž์‹ ์˜ ํ„ด์— ๋ฑ์—์„œ ์นด๋“œ๋ฅผ ๋ฝ‘์Šต๋‹ˆ๋‹ค. ๋งŒ์•ฝ ํ•œ agent๊ฐ€ ๋งˆ์ง€๋ง‰ ์นด๋“œ๋ฅผ ๋ฝ‘์œผ๋ฉด, ๊ทธ agent๋ฅผ ํฌํ•จํ•œ ๋ชจ๋“  agent๊ฐ€ ํ•œ๋ฒˆ์˜ action์„ ๋Œ์•„๊ฐ€๋ฉด ํ•œ ๋’ค ๊ฒŒ์ž„์€ ๋๋‚˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

๊ฒŒ์ž„์˜ ๋ชฉํ‘œ๋Š” ๊ฐ ์ปฌ๋Ÿฌ๋ณ„NcolorN_{\mathrm{color}}Ncolorโ€‹์— ๋Œ€ํ•ด rank 1๋ถ€ํ„ฐ ์˜ค๋ฆ„์ฐจ์ˆœ์œผ๋กœ rank NrankN_{\mathrm{rank}}Nrankโ€‹๊นŒ์ง€ ๋ฐฐ์—ดํ•˜๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ์ž…๋‹ˆ๋‹ค. ๋งŒ์•ฝ ํ•œ ์ปฌ๋Ÿฌ์— ๋Œ€ํ•ด NrankN_{\mathrm{rank}}Nrankโ€‹๊นŒ์ง€ ์ฑ„์›Œ์กŒ๋‹ค๋ฉด, hint ํ† ํฐ์„ํ•˜๋‚˜ ๋” ๋ฐ›๊ฒŒ๋ฉ๋‹ˆ๋‹ค. agent๊ฐ€ ๋งŒ์•ฝ ์ž˜ ๋ชป ๋“ฑ๋ก์„ ํ•˜๊ฒŒ ๋œ๋‹ค๋ฉด, 3๊ฐœ ์žˆ๋Š” life point์—์„œ ํ•˜๋‚˜๋ฅผ ๋ฒ„๋ฆฌ๊ฒŒ๋˜๊ณ , ๊ทธ ์นด๋“œ๋„ ๋ฒ„๋ฆฌ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ๋งŒ์•ฝ agent๊ฐ€ ๋“ฑ๋ก์„ ์ œ๋Œ€๋กœ ํ•œ๋‹ค๋ฉด, 1 ํฌ์ธํŠธ๋ฅผ ์–ป๊ฒŒ ๋˜๊ณ , ์ด ๋•Œ, ์ตœ๊ณ ๋กœ ๋ฐ›์„ ์ˆ˜ ์žˆ๋Š” ์ ์ˆ˜๋Š” NcolorN_{\mathrm{color}}Ncolorโ€‹NrankN_{\mathrm{rank}}Nrankโ€‹ ์ž…๋‹ˆ๋‹ค.

Previous7.4.2 HanabiNext7.4.4 Beliefs in Hanabi

Last updated 4 years ago

Was this helpful?