Abstract

๋“œ๋ก  ์ปจํŠธ๋กค, ํ™”๋ฌผ ์šด์†ก๊ณผ ๊ฐ™์€ ์„ธ์ƒ์˜ ๋งŽ์€ ๋ฌธ์ œ๋“ค์€, ๋ถ€๋ถ„ ๊ด€์ธก ๊ฐ€๋Šฅํ•œ(POMDP : Particially Observable Markov Decision Process) ์ƒํ™ฉ์—์„œ์˜ Multi-Agent ํ™˜๊ฒฝ์— ๋†“์—ฌ์žˆ์Šต๋‹ˆ๋‹ค. ๋”์šฑ์ด, ๋” ๋งŽ์€ ๋จธ์‹ ๋Ÿฌ๋‹ ์‹œ์Šคํ…œ์ด ์‹ค์ œ ์ƒํ™ฉ์— ์ ์šฉ๋จ์—๋”ฐ๋ผ, agent๋Š” ์„œ๋กœ์—๊ฒŒ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ์‹œ์ž‘ํ•˜๊ณ  ์ด๋ฅผ multi agent๋กœ ๋ฌธ์ œ๋ฅผ ์ •์˜ํ•˜๋Š” ๊ฒƒ์— ๋Œ€ํ•œ ์ค‘์š”์„ฑ์ด ์ปค์ ธ๋งŒ ๊ฐ€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ฒˆ์—ญ๋ณธ์—์„œ๋Š” ์•„๋ž˜์„œ ์„ค๋ช…ํ•˜๋Š” ์ƒํ™ฉ๋“ค์— ๋Œ€ํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ Deep Multi-Agent Reinforcement Learning(DMARL)์˜ method๋“ค์„ ์ฃผ๋กœ ๋ฐฐ์šฐ๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

์—ฌ๊ธฐ์„œ ์ฃผ๋กœ ๋‹ค๋ฃฐ ๋ฌธ์ œ๋Š” ํ˜‘๋ ฅํ•˜๋Š”(Collaborate) ๋ฌธ์ œ , ์†Œํ†ตํ•˜๋Š”(Communicate) ๋ฌธ์ œ, ์ƒํ˜ธ๊ฐ„์˜ ์˜ํ–ฅ์„ ์ฃผ๋Š”(Reciprocate) ๋ฌธ์ œ๋กœ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ชจ๋“  ๋ฌธ์ œ์—์„œ ๊ณตํ†ต์ ์œผ๋กœ ์“ฐ์ด๋Š” ํ…Œํฌ๋‹‰์œผ๋กœ๋Š” centralized training, decentralized execution์ž…๋‹ˆ๋‹ค. ํ•™์Šต์ค‘์—” ๋ชจ๋“  state๋ฅผ ๋ณผ ์ˆ˜์žˆ๋Š” critic์ด agent๋ฅผ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋„๋ก ๋•๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋‚˜์˜ค๋Š” policy๋Š” agent ๊ฐœ๋ณ„์˜ ํ–‰๋™๊ณผ ์ง€์—ญ์ ์ธ ๊ด€์ฐฐ์œผ๋กœ๋„ ์ถฉ๋ถ„ํžˆ ์ƒํ™ฉ์„ ์ดํ•ดํ•˜๊ณ  ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•™์Šตํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค๋ฉด, agent๊ฐ€ ํ•™์Šต์ค‘์—์„œ๋Š” ์ž์‹ ์˜ ๊ด€์ฐฐ์™ธ์—๋„ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋‚ด์—์„œ ์ถ”๊ฐ€์ ์ธ state ์ •๋ณด๋ฅผ ์ฃผ๊ฑฐ๋‚˜, agent๊ฐ„์˜ communication์„ ํ•˜๋„๋ก ๋•๋Š” ํ•™์Šต ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด๋Š” ๋งŽ์€ ์ƒํ™ฉ์—์„œ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋ฉด์„œ agent์˜ ์„ฑ๋Šฅ์„ ๋†’์—ฌ์ค„ ์ˆ˜ ์žˆ๋Š” ์ข‹์€ ๋ฐฉ๋ฒ•์ค‘์— ํ•˜๋‚˜๋กœ, ํ˜„์žฌ ๋งŽ์€ MARL method๋“ค์ด ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋Š” ํ…Œํฌ๋‹‰์ž…๋‹ˆ๋‹ค.

chapter 3์—์„œ๋Š” collaborate ์ƒํ™ฉ์—์„œ์˜ common objective๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•ด ๊ธฐ์ˆ ํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ์˜ ์–ด๋ ค์›€ ์ค‘ ํ•˜๋‚˜๋Š” multi-agent ์ƒํ™ฉ์—์„œ ์–ด๋–ค agent์˜ ํ–‰๋™์ด reward์— ์ง์ ‘ ์˜ํ–ฅ์„ ๋ฏธ์ณค๋Š”์ง€ ์ž…๋‹ˆ๋‹ค(multi-agent credit assignment). ๋ชจ๋“  agent๋“ค์˜ action์€ episode๋‚ด์—์„œ reward์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ๋•Œ๋ฌธ์—, ํ•œ agent์˜ ํ–‰๋™์— ๋Œ€ํ•œ ํ‰๊ฐ€๋ฅผ ๋ถ„๋ฆฌํ•ด์„œ ํ•ด๋‚ด๊ธฐ๊ฐ€ ์–ด๋ ค์›€์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” ์ด๋Ÿฐ ๋ฌธ์ œ๋ฅผ ํ’€๊ธฐ ์œ„ํ•ดCounterfactual Multi-Agent Policy Gradients(COMA) ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. COMA์—์„œ๋Š” Counterfactual baseline ์„ ํ†ตํ•ด ๊ฐ agent์˜ action์ด ํŒ€๋‚ด์—์„œ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.

chapter 4์—์„œ๋Š” agent์‚ฌ์ด์—์„œ์˜ common knowledge์— ๋Œ€ํ•œ ์ค‘์š”๋„์— ๋Œ€ํ•ด์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ด๋ก ์œผ๋กœ ์ •๋ฆฌํ•˜์—ฌ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. Multi-Agent Common Knowledge Reinforcement Learning(MACKRL)๋Š” agent๋“ค์˜ subgroup๋“ค์ด ์„œ๋กœ ๊ฐ™์€ common knowledge๋ฅผ ๊ณต์œ ํ•˜๋Š” ๊ณ„์ธต์ ์ธ controllers๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋Š” ์ด์œ ๋Š” ๊ทธ๋ฃน์˜ action์ด joint๋œ space๋ฅผ ๊ฐ€์ง€๊ฑฐ๋‚˜ ๋งŽ์€ common knowledge๋ฅผ ๊ฐ€์ง„ subgroup์—๊ฒŒ ๊ธฐ๋Šฅ์„ ์œ„์ž„ํ•˜๊ธฐ ์œ„ํ•ด์„œ์ž…๋‹ˆ๋‹ค.

chapter 5์—์„œ๋Š” MARL ์ƒํ™ฉ์—์„œ๋Š” ๊ฐ agent๊ฐ€ action์„ ์ทจํ•˜๋Š” ํ–‰๋™์ด environment๋ฅผ non-stationaryํ•˜๊ฒŒ ๋งŒ๋“ค์–ด replay buffer๋ฅผ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์€ ํ•™์Šตํ•˜๊ธฐ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ญ๋‹ˆ๋‹ค. ์ด ๋•Œ ์–ด๋–ป๊ฒŒ replay buffer๋ฅผ ์ด์šฉํ•  ์ˆ˜ ์žˆ์„์ง€์— ๋Œ€ํ•ด ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.

part 1(chapter 3~5)๊นŒ์ง„ agent๋“ค์ด ๋ชจ๋‘ ์„œ๋กœ ์†Œํ†ต์ด ์—†์ด decentralized ๋˜์–ด์„œ action์„ ์ทจํ•˜๋Š” ์ƒํ™ฉ์— ๋Œ€ํ•ด ๊ฐ€์ •ํ–ˆ๋Š”๋ฐ, part 2(chapter 6~7)์—์„œ๋Š” agent๊ฐ€ communication protocol์„ ๋ฐฐ์šธ ์ˆ˜ ์žˆ๋Š” ์„ธ๊ฐ€์ง€ ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค.

์ฒซ๋ฒˆ์งธ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” Reinforced Inter-Agent Learning(RIAL)๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” environment์— ์˜ํ–ฅ์„ ์ฃผ์ง€ ์•Š๋Š” message๋ฅผ agent๋ผ๋ฆฌ ์ฃผ๊ณ ๋ฐ›๋Š” ๋ฐฉ์‹์œผ๋กœ communication์ด ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค.

๋‘๋ฒˆ์งธ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” Differentiable Inter-Agent Learning(DIAL)์ž…๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ๋„ message๋ฅผ ์‚ฌ์šฉํ•˜์ง€๋งŒ, RIAL๋Š” message๋ฅผ optimization term์— ๋„ฃ์–ด RIAL๋ณด๋‹ค ์„ฌ์„ธํ•˜๊ฒŒ communication protocol์„ ๋ฐฐ์šธ ์ˆ˜ ์žˆ๋„๋กํ•ฉ๋‹ˆ๋‹ค.

์„ธ๋ฒˆ์งธ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” Baysian Action Decoder(BAD)๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” agent์˜ environment์— ์˜ํ–ฅ์„ ์ฃผ๋Š” action ์ž์ฒด๋ฅผ communication ๋ฐฉ๋ฒ•์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ๋กœ ๊ฐ๊ฐ์˜ agent๊ฐ€ ๊ด€์ฐฐํ•œ ๋ถˆ์™„์ „ํ•œ ์ •๋ณด์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ์–ด๋–ป๊ฒŒ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์„์ง€์— ๋Œ€ํ•ด ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.

์œ„์˜ part 1๊ณผ part 2์—์„œ๋Š” ๋ชจ๋“  agents๊ฐ€ team reward๋ฅผ ์ตœ์ ํ™”ํ–ˆ์ง€๋งŒ general-sum(win-winํ˜น์€ lose-lose๋„ ๊ฐ€๋Šฅํ•œ)๊ฒฝ์šฐ์— ๋Œ€ํ•ด part 3์—์„œ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. ๋˜, ๊ทธ๋ฅผ ํ•ด๊ฒฐํ•  Learning with Opponents-Learning Awareness(LOLA)๋ผ๋Š” method๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. LOLA์—์„œ agent๋Š” ์ž์‹ ์˜ optimization term์— ์ƒ๋Œ€์˜ policy์˜ ๋ณ€ํ™”๋ฅผ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. defact-defact ๊ท ํ˜•์„ ์ด๋ฃจ๋Š” ์ฃ„์ˆ˜์˜ ๋”œ๋ ˆ๋งˆ๋ณด๋‹ค, LOLA๋Š” tit-for-tat์˜ ์ „๋žต์„ ํ˜•์„ฑํ•ฉ๋‹ˆ๋‹ค. LOLA๋Š” ํšจ๊ณผ์ ์œผ๋กœ ์ƒํ˜ธ์ž‘์šฉ์„ ํ•˜๋ฉด์„œ, ์ „์ฒด์ ์œผ๋กœ ๋†’์€ reward๋ฅผ ๋ฐ›๋Š”๋ฐ ์ง‘์ค‘ํ•ฉ๋‹ˆ๋‹ค.

LOLA์—์„œ ์ƒ๋Œ€๋ฐฉ์˜ policy๋ฅผ ๊ทผ์‚ฌํ•ด์•ผํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋†’์€ ์ฐจ์ˆ˜์˜ gradient๊ฐ€ ๋ฐœ์ƒํ•˜๋Š”๋ฐ ์ด๋ฅผ ์ข€๋” ์ •ํ™•ํžˆ ๊ทผ์‚ฌํ•˜๊ธฐ ์œ„ํ•ด Infinitely Differentiable Monte-Carlo estimator(DiCE)๋ฅผ ์†Œ๊ฐœํ•˜๋Š”๋ฐ, ์ด๋Š” ๋†’์€ ์ฐจ์ˆ˜์˜ ์ •ํ™•ํ•œ gradients๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ LOLA์— ์ ์šฉ๋˜์—ˆ์„ ๋•Œ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค.

Last updated