8.1 Introduction

์ด์ „ ์žฅ์—์„œ๋Š” ์˜ค๋กœ์ง€ fully cooperative multi-agent RL์— ๋Œ€ํ•ด์„œ ๋ฐฐ์› ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋‹น์—ฐํ•˜๊ฒŒ๋„ Multi-Agent์—์„œ์˜ ๋ฌธ์ œ๋Š” ํ•ญ์ƒ cooperativeํ•˜์ง€ ์•Š๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Hierarchical Reinforcement Learning์ด๋‚˜, Generative Adversarial Network์™€ Decentralized Optimization๊ฐ™์€ ๋ถ„์•ผ๋“ค๋„ Multi-agent Problem์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ๋ชจ๋“  ์„ค์ •์—์„œ ํŠนํžˆ Trainable Object๊ฐ„์˜ ๋‹ค๋ฅธ objective๋ฅผ ๋ฐฐ์šธ ๋•Œ, ๋ฌธ์ œ๊ฐ€ non-stationaryํ•ด์ง€๊ณ , ๋ถˆ์•ˆ์ •ํ•ด์ง€๊ฑฐ๋‚˜, ๋ฐ”๋ผ์ง€ ์•Š์•˜๋˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

๋‹ค์–‘ํ•˜๊ณ  ๋ณต์žกํ•œ ์ƒํ™ฉ์—์„œ๋„ ํ˜‘๋ ฅ์„ ์œ ์ง€ํ•˜๋Š” ๋Šฅ๋ ฅ์€ ์ธ๊ฐ„ ์‚ฌํšŒ์˜ ์„ฑ๊ณต์— ํฐ ๊ธฐ์—ฌ๋ฅผ ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ „์Ÿ ์†์—์„œ๋„ ์ด๋Ÿฌํ•œ ๋Šฅ๋ ฅ์€ ๊ด€์ฐฐ๋˜๊ณค ํ–ˆ์Šต๋‹ˆ๋‹ค. ๋ฏธ๋ž˜์— AI agent๊ฐ€ ์ธ๊ฐ„์‚ฌํšŒ์—์„œ ๋ถ€๋ถ„์ ์œผ๋กœ ํ˜‘๋ ฅํ•ด์•ผํ•˜๋Š” ์ƒํ™ฉ์—์„œ ์ ๊ทน์ ์œผ๋กœ ํ™œ์šฉ์ด ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋˜๋Š”๋ฐ, ์ด ๋•Œ agent์˜ ํ•™์Šต ์‹คํŒจ๋Š” ํฐ ์žฌ์•™์ด ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

๊ฐ์ž์˜ reward๋ฅผ ์ตœ๋Œ€ํ™” ํ•˜๋ ค๋Š” agent๋“ค ๋ผ๋ฆฌ์˜ ์ƒํ˜ธ ํ˜‘๋ ฅ์€ ์–ด๋–ป๊ฒŒ ์ผ์–ด๋‚˜๋Š” ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•ด ๋Œ€ํ•ด์„œ๋„ ๋งŽ์€ ๊ถ๊ธˆ์ฆ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ๊ฒŒ์ž„ ์ด๋ก ์—์„œ ํ˜‘๋™์ ์ด๊ณ  ๊ฒฝ์Ÿ์ ์ธ ์š”์†Œ๋ฅผ ํฌํ•จํ•˜๋Š” ๊ฒŒ์ž„์˜ ํ•™์Šต ๊ฒฐ๊ณผ๋ฅผ ์—ฐ๊ตฌํ•œ ์˜ค๋žœ ์—ญ์‚ฌ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋Œ€ํ‘œ์ ์œผ๋กœ ํ˜‘๋ ฅ๊ณผ ๋ณ€์ ˆ์— ๋Œ€ํ•ด iterated prisoner's dilemma ๋ฌธ์ œ์˜ ์˜ˆ๊ฐ€ ์žˆ์Šต๋‹ˆ. ์ด ๊ฒŒ์ž„์—์„œ์˜ ์ด๊ธฐ์ฃผ์˜๋Š” ๋ชจ๋“  agents์˜ ์ „์ฒด์ ์ธ reward์˜ ๊ฐ์†Œ๋กœ ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ, ํ˜‘๋ ฅ์€ ์ „์ฒด์˜ reward๋ฅผ ์ข‹๊ฒŒ ๋งŒ๋“ญ๋‹ˆ๋‹ค.

ํฅ๋ฏธ๋กญ๊ฒŒ๋„, ์ด๋Ÿฌํ•œ ๊ฐ„๋‹จํ•œ ์ฃ„์ˆ˜์˜ ๋”œ๋ ˆ๋งˆ ๋ฌธ์ œ์—์„œ๋„, ๋งŽ์€ MARL algorithm๋Š” ๋ชจ๋‘ ์ตœ์•…์˜ ์ƒํ™ฉ์„ ๋งˆ์ฃผํ•˜๋„๋ก ํ•™์Šต์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ด๋Š” ํ˜„์žฌ SOTA ๋˜ํ•œ ์ด๋Ÿฌํ•œ ๊ฐ„๋‹จํ•œ ํ˜‘๋ ฅ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜์ง€ ๋ชปํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋‹ค๋ฅธ agent๋“ค์„ ๋‹จ์ง€ ํ™˜๊ฒฝ์˜ ์ผ๋ถ€๋ถ„์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜๋Š” ๊ฒƒ์ด ๋ฌธ์ œ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.

๋‹ค๋ฅธ agents์˜ ํ•™์Šตํ•˜๋Š” ํ–‰๋™์— ๋Œ€ํ•œ ์˜๋ฏธ๋ฅผ ์ถ”๋ก ํ•˜๋Š” ๋‹จ๊ณ„๋กœ์จ, ์—ฌ๊ธฐ์„œ๋Š” Learning with Opponent-Learning Awareness(LOLA)๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. LOLA๋Š” ๋‹ค๋ฅธ agent์˜ parameter update๊ฐ€ ๋‹ค๋ฅธ agent์˜ ํ•™์Šต์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ผ์น˜๋Š”์ง€ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋Š” ์ถ”๊ฐ€์ ์ธ term์„ ๊ฐ€์ง„ ํ•™์Šต ๋ฃฐ์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. (๋ฐ˜๋ณต๋œ ์„ค๋ช…์„ ๋ง‰๊ธฐ์œ„ํ•ด zero-sum ์ƒํ™ฉ์— ํ•œ์ •๋˜์ง€ ์•Š๋”๋ผ๋„ ์ƒ๋Œ€๋ฐฉ๋“ค์„ ๋ชจ๋‘ opponents๋ผ๊ณ  ํ‘œํ˜„ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.) ์—ฌ๊ธฐ์„œ๋Š” iterated prisoner's dilemma(IPD)์ƒํ™ฉ์—์„œ ๋ชจ๋“  agent์—๊ฒŒ ์ ์šฉ๋˜๋Š” ์ถ”๊ฐ€์ ์ธ term์„ ์ด์šฉํ•ด ์ƒํ˜ธ์ž‘์šฉํ•˜๊ณ  ํ˜‘๋ ฅํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•จ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ๋˜, IPD์—์„œ ์‹คํ—˜์ ์œผ๋กœ ๋ณด์•˜์„ ๋•Œ, ๊ฐ agent๋Š” LOLA๊ฐ€ ์ถ”๊ฐ€์ ์ธ ๋ณด์ƒ์ด ์—†์ด๋„, naive learning์—์„œ LOLA๋กœ ๋ฐ”๊พธ๋Š” ๊ฒƒ์ด ์žฅ๋ ค๋œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ž…๋‹ˆ๋‹ค. ์ด๋Š” ์ง€์—ญ์ ์œผ๋กœ LOLA๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ชจ๋“  agent๋Š” ์•ˆ์ •๋œ ํ‰ํ˜• ์ƒํƒœ์— ์ด๋ฃฐ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ž…๋‹ˆ๋‹ค. ๋˜ํ•œ LOLA agent๊ฐ€ round-robin tournament์—์„œ๋„ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๊ฒƒ๋„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

LOLA๋ฅผ likelihood ratio policy gradients๋ฅผ ์‚ฌ์šฉํ•œ DMARL ์„ค์ •์— ์ ์šฉํ•˜๋Š”๋ฐ, ์ด๋Š” LOLA๊ฐ€ high-dimensional input๊ณผ parameter space์—์„œ๋„ ์ž˜ ์ ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ž…๋‹ˆ๋‹ค.

IPD์™€ iterated matching pennies(IMP)์—์„œ LOLA์˜ policy gradient version์„ ๋ณด์˜€๋Š”๋ฐ, ์ผ๋ฐ˜์ ์ธ RL ์ ‘๊ทผ๋“ค ์‹คํŒจํ–ˆ์ง€๋งŒ LOLA๋Š” ์ „๋ฐ˜์ ์œผ๋กœ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋‚ผ ์ˆ˜ ์žˆ๊ฒŒ agent๋ผ๋ฆฌ ํ˜‘๋ ฅํ•˜๋„๋ก ์ด๋Œ์—ˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ LOLA๋ฅผ opponent policy๊ฐ€ ์–ด๋–ค ๊ฒƒ์ธ์ง€ ๋ชจ๋ฅผ ๋•Œ, ์ถ”๋ก ํ•ด์•ผํ•  ๋•Œ๋กœ๋„ ํ™•์žฅํ•˜์˜€์Šต๋‹ˆ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ, grid-world task์— opponent modeling์ด ์žˆ๊ณ  ์—†๊ณ ์— ๋”ฐ๋ฅธ LOLA๋ฅผ ์ ์šฉํ•œ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด task๋Š” action space๊ฐ€ ํ™•์žฅ๋œ task์ด๊ณ , high-dimensional recurrent policies๋ฅผ ํ•„์š”๋กœ ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ์‹คํ—˜์—์„œ๋„, LOLA๋Š” ์ƒ๋Œ€์˜ policy๋ฅผ ๋ชจ๋ฅด๊ฑฐ๋‚˜ ์ธก์ •ํ•ด์•ผํ•  ๋•Œ๋„ ์ž˜ ํ˜‘๋ ฅํ–ˆ์Šต๋‹ˆ๋‹ค.

Last updated